
Extractive Summarization Using
Deep Learning

Sukriti Verma, Vagisha Nidhi

Delhi Technological University,
India

sukriti bt2k14@dtu.ac.in,
vagisha.nda@gmail.com

Abstract. This paper proposes a text summarization approach for factual
reports using a deep learning model. This approach consists of three phases:
feature extraction, feature enhancement, and summary generation, which work
together to assimilate core information and generate a coherent, understandable
summary. We have extracted various features from each sentence, and are using a
Restricted Boltzmann Machine to enhance and abstract those features to improve
resultant accuracy without losing any important information. The sentences are
scored using those enhanced features and an extractive summary is constructed.
Experimentation carried out on several articles demonstrates the effectiveness of
the proposed approach1.

Keywords: Unsupervised, single document, deep learning, extractive.

1 Introduction

A summary can be defined as a text produced from one or more texts, containing a
significant portion of the information from the original text(s), and that is no longer
than half of the original text(s) [7]. According to [11], text summarization is the process
of distilling the most important information from a source to produce an abridged
version for a particular user and task(s). When this is done by means of a computer, i.e.
automatically, we call it Automatic Text Summarization. This process can be seen as a
form of compression and it necessarily suffers from information loss but it is essential
to tackle the information overload due to abundance of textual material available on
the Internet.

Text Summarization can be classified into extractive summarization and abstractive
summarization based on the summary generated. Extractive summarization is creating a
summary based on strictly what you get in the original text. Abstractive summarization
mimics the process of paraphrasing a text. Text(s) summarized using this technique
looks more human-like and produces condensed summaries. These techniques are much
harder to implement than the extractive summarization techniques. In this paper, we
follow the extractive methodology to develop techniques for summarization of factual
reports or descriptions.

1The source code for this paper is available at https://github.com/vagisha-nidhi/TextSummarizer

97

ISSN 1870-4069

Research in Computing Science 141, 2017pp. 97–106; rec. 2017-02-02; acc. 2017-04-12



We have developed an approach for single-document summarization using deep
learning. So this paper intends to propose an approach by referencing the architecture
of the human brain. It is broken down into three phases: feature extraction [4], feature
enhancement, and summary generation based on values of those features.

Since it can be very difficult to construct high-level, abstract features from raw data,
we use deep learning in the second phase to build complex features out of simpler
features extracted in the first phase. These extracted features depend highly on how
factual the given document is. In the end, we have run the proposed algorithm on several
factual reports to evaluate and demonstrate the effectiveness of the proposed approach
based on the measures such as Recall, Precision, and F-measure.

2 Related Works

Most early work on text summarization was focused on technical documents and early
studies on summarization aimed at summarizing from pre-given documents without
any other requirements, which is usually known as generic summarization [2]. Luhn
[10] proposed that the frequency of a particular word in an article provides a useful
measure of its significance. A number of key ideas, such as stemming and stop word
filtering, were put forward in this paper that have now been understood as universal
preprocessing steps to text analysis.

Baxendale [1] examined 200 paragraphs and found that in 85% of the paragraphs,
the topic sentence came as the first one and in 7% of the time, it was the last sentence.
This positional feature has been used in many complex machine learning based systems
since. Edmundson [6] focused his work around the importance of word frequency and
positional importance as features.

Two other features were also used: cue words, and the skeleton structure of the
document. Weights were associated with these features manually and finally sentences
were scored. During evaluation, it was found that around 44% of the system generated
summaries matched the target summaries written manually by humans.

Upcoming researchers in text summarization have approached it problem from many
aspects such as natural language processing [19], statistical modelling [5] and machine
learning. While initially most machine learning systems assumed feature independence
and relied on naive-Bayes methods, other recent ones have shifted focus to selection of
appropriate features and learning algorithms that make no independence assumptions.
More recent papers, in contrast, used neural networks towards this goal.

Text Summarization can be done for one document, known as single-document
summarization [17], or for multiple documents, known as multi-document
summarization [15]. On basis of the writing style of the final summary generated, text
summarization techniques can be divided into extractive methodology and abstractive
methodology [18]. The objective of generating summaries via the extractive approach
is choosing certain appropriate sentences as per the requirement of a user.

Due to the idiosyncrasies of human-invented languages and grammar, extractive
approaches, which select a subset of sentences from the input documents to form a
summary instead of paraphrasing like a human [3], are the mainstream in the area.

98

Sukriti Verma, Vagisha Nidhi

Research in Computing Science 141, 2017 ISSN 1870-4069



Almost all extractive summarization methods have three main obstacles. The first
obstacle is the ranking problem, i.e. how you rank words, phrases and/or sentences.
The second obstacle is the selection problem, i.e. how to select a subset of those ranked
units [8]. The third obstacle is the coherence problem, i.e. how to ensure that the selected
units form an understandable summary rather than being a set of disconnected words,
phrases and/or sentences.

Algorithms that determine the relevance of a textual unit, that is words, phrases
and/or sentences, with respect to the requirement of the user are used to solve the
ranking problem. The selection and coherence problems are solved by methods that
improve diversity, minimize redundancy and pick up phrases and/or sentences that are
somewhat similar so that more relevant information can be covered by the summary in
lesser words and the summary is coherent. Our approach solves the ranking problem by
learning a certain set of features for each sentence.

On the basis of these features, a score is calculated for each sentence and sentences
are arranged in decreasing order of their scores [16]. Even with a list of ranked
sentences, it is not a trivial problem to select a subset of sentences for a coherent
summary which includes diverse information, minimizes redundancy and is within a
word limit. Our approach solves this problem as follows.

The most relevant sentence is the first sentence in this sorted list and is chosen as part
of the subset of sentences which will form the summary. Then the next sentence selected
is a sentence having highest Jaccard similarity with the first sentence and is picked from
the top half of the list. This process is recursively and incrementally repeated to select
more sentences until limit is reached.

3 Proposed Approach

3.1 Preprocessing

Preprocessing is crucial when it comes to processing text. Ambiguities can be caused
by various verb forms of a single word, different accepted spellings of a certain word,
plural and singular terms of the same things. Moreover, words like a, an, the, is, of etc.
are known as stop words. These are certain high frequency words that do not carry any
information and don’t serve any purpose towards our goal of summarization. In this
phase we do:

1. Document Segmentation: The text is divided into paragraphs so as to keep a track
of which paragraph each sentence belongs to and what is the position of a sentence
in its respective paragraph.

2. Paragraph Segmentation: The paragraphs are further divided into sentences.

3. Word Normalization: Each sentence is broken down into words and the words are
normalized. Normalization involves lemmatization and results in all words being in
one common verb form, crudely stemmed down to their roots with all ambiguities
removed. For this purpose, we use Porters algorithm.

4. Stop Word Filtering: Each token is analyzed to remove high frequency stop words.

99

Extractive Summarization Using Deep Learning

Research in Computing Science 141, 2017ISSN 1870-4069



5. PoS Tagging: Remaining tokens are Part-of-Speech tagged into verb, noun, adjective
etc. using the PoS Tagging module supplied by NLTK [12].

3.2 Feature Extraction

Once the complexity has been reduced and ambiguities have been removed, the
document is structured into a sentence-feature matrix. A feature vector is extracted for
each sentence. These feature vectors make up the matrix. We have experimented with
various features. The combination of the following 9 sentence features has turned out
most suitable to summarize factual reports. These computations are done on the text
obtained after the preprocessing phase:

1. Number of thematic words: The 10 most frequently occurring words of the text
are found. These are thematic words. For each sentence, the ratio of no. of thematic
words to total words is calculated:

Sentence Thematic =
No. of thematic words

Total words
. (1)

2. Sentence position: This feature is calculated as follows:

Sentence Position =

{
1, if its the first or last sentence of the text,
cos((SenPos − min)((1/max)− min)), otherwise,

(2)

where, SenPos = position of sentence in the text, min = th x N, max = th x 2 x N, N
is total number of sentences in document, th is threshold calculated as 0.2 x N.

By this, we get a high feature value towards the beginning and ending of the
document, and a progressively decremented value towards the middle.

3. Sentence length: This feature is used to exclude sentences that are too short as those
sentences will not be able to convey much information:

Sentence Length =

{
0, if number of words is less than 3,
No. of words in the sentence, otherwise. (3)

4. Sentence position relative to paragraph: This comes directly from the observation
that at the start of each paragraph, a new discussion is begun and at the end of each
paragraph, we have a conclusive closing:

Position In Para =

{
1, if it is the first or last sentence of a paragraph,
0, otherwise. (4)

5. Number of proper nouns: This feature is used to give importance to sentences
having a substantial number of proper nouns. Here, we count the total number of
words that have been PoS tagged as proper nouns for each sentence.

6. Number of numerals: Since figures are always crucial to presenting facts, this
feature gives importance to sentences having certain figures. For each sentence we
calculate the ratio of numerals to total number of words in the sentence:

Sentence Numerals =
No. of numerals

Total words
. (5)

100

Sukriti Verma, Vagisha Nidhi

Research in Computing Science 141, 2017 ISSN 1870-4069



Fig. 1. A restricted Boltzmann machine [9].

7. Number of named entities: Here, we count the total number of named entities in
each sentence. Sentences having references to named entities like a company, a group
of people etc. are often quite important to make any sense of a factual report.

8. Term Frequency-Inverse Sentence Frequency (TF – ISF): Since we are working
with a single document, we have taken TF-ISF feature into account rather than
TF-IDF. Frequency of each word in a particular sentence is multiplied by the total
number of occurrences of that word in all the other sentences. We calculate this
product and add it over all words:

TF− ISF =
log(

∑
all words TF ∗ ISF)
Total words

. (6)

9. Sentence to Centroid similarity: Sentence having the highest TF-ISF score is
considered as the centroid sentence. Then, we calculate cosine similarity of each
sentence with that centroid sentence:

Sentence Similarity = cosine sim(sentence, centroid). (7)

At the end of this phase, we have a sentence-feature matrix.

3.3 Feature Enhancement

The sentence-feature matrix has been generated with each sentence having 9 feature
vector values. After this, recalculation is done on this matrix to enhance and abstract the
feature vectors, so as to build complex features out of simple ones. This step improves
the quality of the summary.

To enhance and abstract, the sentence-feature matrix is given as input to a Restricted
Boltzmann Machine (RBM) which has one hidden layer and one visible layer. A single
hidden layers will suffice for the learning process based on the size of our training data.
The RBM that we are using has 9 perceptrons in each layer with a learning rate of 0.1.

We use Persistent Contrastive Divergence method to sample during the learning
process [9]. We have trained the RBM for 5 epochs with a batch size of 4 and 4
parallel Gibbs Chains, used for sampling using Persistent CD method. Each sentence
feature vector is passed through the hidden layer in which feature vector values for each
sentence are multiplied by learned weights and a bias value is added to all the feature
vector values which is also learned by the RBM.

101

Extractive Summarization Using Deep Learning

Research in Computing Science 141, 2017ISSN 1870-4069



Fig. 2. Comparison between feature vector sum and enhanced feature vector sum.

At the end, we have a refined and enhanced matrix. Note that the RBM will have
to be trained for each new document that has to be summarized. The idea is that no
document can be summarized without going over it. Since each document is unique in
the features extracted in section 3.2, the RBM will have to be freshly trained for each
new document.

3.4 Summary Generation

The enhanced feature vector values are summed to generate a score against each
sentence. The sentences are then sorted according to decreasing score value. The most
relevant sentence is the first sentence in this sorted list and is chosen as part of the subset
of sentences which will form the summary.

Then the next sentence we select is the sentence having highest Jaccard similarity
with the first sentence, selected strictly from the top half of the sorted list. This
process is recursively and incrementally repeated to select more sentences until a
user-specified summary limit is reached. The sentences are then re-arranged in the order
of appearance in the original text. This produces a coherent summary rather than a set
of haywire sentences.

4 Results and Performance Evaluation

Several factual reports from various domains of health, technology, news, sports etc.
with varying number of sentences were used for experimentation and evaluation. The
proposed algorithm was run on each of those and system-generated summaries were
compared to the summaries produced by humans. Feature Extraction and Enhancement
is carried out as proposed in sections 3.2 and 3.3 for all documents. The values of feature
vector sum and enhanced feature vector sum for each sentence of one such document
have been plotted in Fig 2.

102

Sukriti Verma, Vagisha Nidhi

Research in Computing Science 141, 2017 ISSN 1870-4069



Fig. 3. Precision values corresponding to summaries of various documents.

The Restricted Boltzmann Machine has extracted a hierarchical representation out of
data that initially did not have much variation, hence discovering the latent factors. The
sentences have then been ranked on the basis of final feature vector sum and summaries
are generated as proposed in section 3.4.

Evaluation of the system-generated summaries is done based on three basic
measures: Precision, Recall and F-Measure [14]. It can be seen that as the number of
sentences in the original document cross a certain threshold, the Restricted Boltzmann
Machine has ample data to be trained successfully and summaries with high precision
and recall values are generated. See Fig 3 and 4.

F-Measure is defined as follows [13]:

F-Measure =
2 ∗ Recall ∗ Precision

Recall + Precision
. (8)

5 Comparative Analysis

The existing approach was executed for the same set of articles with just one layer
of RBM, rather than two as it specifies and average values of Precision, Recall and
F-Measure were plotted for drawing a comparison between the existing approach and
the proposed approach, while keeping the amount of computation constant.

The proposed approach has an average precision value of 0.7 and average recall value
of 0.63 which are both higher than those of the existing approach. Hence, the proposed
approach responds better for summarization of factual reports.

6 Conclusion

We have developed an algorithm to summarize single-document factual reports.
The algorithm runs separately for each input document, instead of learning rules
from a corpus, as each document is unique in itself. This is an advantage that our
approach provides.

103

Extractive Summarization Using Deep Learning

Research in Computing Science 141, 2017ISSN 1870-4069



Fig. 4. Recall values corresponding to summaries of various documents.

Fig. 5. F-Measure values corresponding to summaries of various documents.

We extract 9 features from the given document and enhance them to score each
sentence. Recent approaches have been using 2 RBMs stacked on top of each other
for feature enhancement. Our approach uses only one RBM and, works effectively and
efficiently for factual reports.

This has been demonstrated by hand-picking factual descriptions from several
domains and comparing the system-generated summaries to those written by humans.
This approach can further be developed by adapting the extracted features as per the
user’s requirements and further adjusting the hyperparameters of the RBM to minimize
processing and error in encoded values.

104

Sukriti Verma, Vagisha Nidhi

Research in Computing Science 141, 2017 ISSN 1870-4069



Fig. 6. Precison, Recall and F-Measure values for the proposed approach (left bars) and the
existing approach (right bars).

Acknowledgments. We would like to extend our gratitude to Dr. Daya Gupta,
Professor, Department of Computer Science and Engineering, Delhi Technological
University(Formerly Delhi College of Engineering) for providing insight and expertise
that greatly assisted this research.

References

1. Baxendale, P. B.: Machine-made index for technical literature—an experiment. IBM Journal
of Research and Development, vol. 2, no. 4, pp. 354–361 (1958) doi: 10.1147/rd.24.0354

2. Berger, A., Mittal, V. O.: Query-relevant summarization using FAQs. In: Proceedings of the
38th Annual Meeting on Association for Computational Linguistics, pp. 294–301 (2000) doi:
10.3115/1075218.1075256

3. Chen, E., Yang, X., Zha, H., Zhang, R., Zhang, W.: Learning object classes from image
thumbnails through deep neural networks. In: IEEE International Conference on Acoustics,
Speech and Signal Processing, pp. 829–832 (2008) doi: 10.1109/ICASSP.2008.4517738

4. Chuang, W. T., Yang, J.: Extracting sentence segments for text summarization: A machine
learning approach. In: Proceedings of the 23rd annual international ACM SIGIR conference
on Research and development in information retrieval, pp. 152–159 (2000) doi: 10.1145/
345508.345566

5. Darling, W. M., Song, F.: Probabilistic document modeling for syntax removal in text
summarization. In: Proceedings of the 49th Annual Meeting of the Association for
Computational Linguistics: Human Language Technologies, pp. 642–647 (2011)

6. Edmundson, H. P.: New methods in automatic extracting. Journal of the ACM, vol. 16, no. 2,
pp. 264–285 (1969) doi: 10.1145/321510.321519

7. Hovy, E., Lin, C. Y.: Automated text summarization and the SUMMARIST system. In:
Proceedings of a workshop on held at Baltimore. Association for Computational Linguistics,
pp. 197–214 (1998) doi: 10.3115/1119089.1119121

8. Jin, F., Huang, M., Zhu, X.: A comparative study on ranking and selection strategies for
multi-document summarization. In: Proceedings of the 23rd International Conference on
Computational Linguistics: Posters, pp. 525–533 (2010)

105

Extractive Summarization Using Deep Learning

Research in Computing Science 141, 2017ISSN 1870-4069



9. Learning, D.: Deep learning tutorial (2024) http://deeplearning.net/tutorial/
10. Luhn, H. P.: The automatic creation of literature abstracts. IBM Journal of research and

development, vol. 2, no. 2, pp. 159–165 (1958) doi: 10.1147/rd.22.0159
11. Mani, I., House, D., Klein, G., Hirschman, L., Firmin, T., Sundheim, B.: The TIPSTER

SUMMAC text summarization evaluation. In: Proceedings of the ninth conference on
European chapter of the Association for Computational Linguistics, pp. 77–85 (1999)

12. NLTK: Documentation. natural language toolkit for python (2023) http://www.nltk.org/
13. PadmaPriya, G., Duraiswamy, K.: An approach for text summarization using deep learning

algorithm. Journal of Computer Science, vol. 10, no. 1, pp. 1–9 (2014) doi: 10.3844/jcssp.
2014.1.9

14. Pandu, N., Prabhakar, R.: Performance evaluation of information retrieval systems (2024)
web.stanford.edu/class/cs276/handouts/lecture8-evaluation.ppt

15. Shen, D., Sun, J. T., Li, H., Yang, Q., Chen, Z.: Document summarization using conditional
random fields. In: Proceedings of the 20th International Joint Conference on Artifical
Intelligence, vol. 7, pp. 2862–2867 (2007)

16. Singh, S. P., Kumar, A., Mangal, A., Singhal, S.: Bilingual automatic text summarization
using unsupervised deep learning. In: International Conference on Electrical, Electronics,
and Optimization Techniques (ICEEOT), pp. 1195–1200 (2016) doi: 10.1109/ICEEOT.2016.
7754874

17. Wan, X., Xiao, J.: Single document keyphrase extraction using neighborhood knowledge.
In: Proceedings of the 23rd national conference on Artificial intelligence, vol. 2, pp.
855–860 (2008)

18. Wong, K. F., Wu, M., Li, W.: Extractive summarization using supervised and
semi-supervised learning. In: Proceedings of the 22nd International Conference on
Computational Linguistics, vol. 1, pp. 985–992 (2008)

19. Zhang, Y., Wang, D., Li, T.: iDVS: An interactive multi-document visual summarization
system. In: Joint European Conference on Machine Learning and Knowledge Discovery in
Databases, pp. 569–584 (2011) doi: 10.1007/978-3-642-23808-6 37

106

Sukriti Verma, Vagisha Nidhi

Research in Computing Science 141, 2017 ISSN 1870-4069


